7 класс

Арифметика остатков

Говорят, что два числа a и b сравнимы по модулю m, если разность a-b делится на m (a-b:m). Обозначение: $a\equiv b \pmod{m}$. Это также означает, что числа a и b дают одинаковые остатки при делении на m.

Свойства сравнений. Если $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$, то

- 1) $a + c \equiv b + d \pmod{m}$;
- 2) $ac \equiv bd \pmod{m}$.
- **0.** а) Найдите остаток при делении числа 13^{100} на 4. б) Найдите остаток при делении числа 12^{100} на 13. в) Докажите, что $n^3 + 2n$ делится на 3 для любого натурального n.
- **1.** Докажите, что $21^{2017} 1 \vdots 20$.
- **2.** Докажите, что $30^{99} + 61^{100} \vdots 31$.
- **3.** Докажите, что $n^3 + 5n : 6$.
- **4.** Докажите, что $n^5 n : 10$.
- **5.** Докажите, что $n^3 + 2 / 9$.
- **6.** Докажите, что $n^3 n : 24$ при любом нечётном n.
- 7. Натуральные числа x, y, z таковы, что $x^2 + y^2 = z^2$. Докажите, что хотя бы одно из этих чисел делится на 3.
- **8.** a, b, c натуральные числа, причем a+b+c делится на 6. Докажите, что $a^3+b^3+c^3$ тоже делится на 6.
- 9. Докажите свойства сравнений, написанные в начале этого листочка.